Dynamics of ARF regulation that control senescence and cancer
نویسندگان
چکیده
ARF is an alternative reading frame product of the INK4a/ARF locus, inactivated in numerous human cancers. ARF is a key regulator of cellular senescence, an irreversible cell growth arrest that suppresses tumor cell growth. It functions by sequestering MDM2 (a p53 E3 ligase) in the nucleolus, thus activating p53. Besides MDM2, ARF has numerous other interacting partners that induce either cellular senescence or apoptosis in a p53-independent manner. This further complicates the dynamics of the ARF network. Expression of ARF is frequently disrupted in human cancers, mainly due to epigenetic and transcriptional regulation. Vigorous studies on various transcription factors that either positively or negatively regulate ARF transcription have been carried out. However, recent focus on posttranslational modifications, particularly ubiquitination, indicates wider dynamic controls of ARF than previously known. In this review, we discuss the role and dynamic regulation of ARF in senescence and cancer. [BMB Reports 2016; 49(11): 598-606].
منابع مشابه
Dynamics of senescent cell formation and retention revealed by p14ARF induction in the epidermis.
Cellular senescence, a state of cell-cycle arrest accompanied by dramatic morphologic and metabolic changes, is a central means by which cells respond to physiologic stress and oncogene activity. Senescence is thought to play important roles in aging and in tumor suppression, yet the dynamics by which senescent cells are formed, their effects on tissue function and their eventual fate are poorl...
متن کاملA p53/ARF-dependent anticancer barrier activates senescence and blocks tumorigenesis without impacting apoptosis.
UNLABELLED In response to oncogene activation and oncogene-induced aberrant proliferation, mammalian cells activate apoptosis and senescence, usually via the p53-ARF tumor-suppressor pathway. Apoptosis is a known barrier to cancer and is usually downregulated before full malignancy, but senescence as an anticancer barrier is controversial due to its presence in the tumor environment. In additio...
متن کاملCell Cycle and Senescence A p53/ARF-Dependent Anticancer Barrier Activates Senescence and Blocks Tumorigenesis without Impacting Apoptosis
In response to oncogene activation and oncogene-induced aberrant proliferation, mammalian cells activate apoptosis and senescence, usually via the p53–ARF tumor-suppressor pathway. Apoptosis is a known barrier to cancer and is usually downregulated before full malignancy, but senescence as an anticancer barrier is controversial due to its presence in the tumor environment. In addition, senescen...
متن کاملLong noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression.
Polycomb group proteins (PcG) function as transcriptional repressors of gene expression. The important role of PcG in mediating repression of the INK4b-ARF-INK4a locus, by directly binding to the long noncoding RNA (lncRNA) transcript antisense noncoding RNA in the INK4 locus (ANRIL), was recently shown. INK4b-ARF-INK4a encodes 3 tumor-suppressor proteins, p15(INK4b), p14(ARF), and p16(INK4a), ...
متن کاملARF functions as a melanoma tumor suppressor by inducing p53-independent senescence.
Inactivation of the p53 pathway represents the most common molecular defect of human cancer. But in the setting of melanoma, a highly aggressive and invariably fatal malignancy in its advanced disseminated form, mutation/deletion of p53 is relatively rare, whereas its positive regulator ARF is often lost. Here, we show that genetic deficiency in Arf but not p53 facilitates rapid development of ...
متن کامل